| 
 
 
 
 
 | Ten Commandments     
            
 81 
 whether    they   contain   the   so-called  
Pythagorean
 numbers   3,   4,   and   5.35)  This  is  the  case, 
if  the
 tablets  are  placed  side  by  side 
next  to  each  other,
 because   their   length   is
  3   half-cubits,  their  com-
 bined    width  
is   4   half-cubits,   and   the   diagonal
 of   the
  combined   rectangle  is  5  half-cubits,  which
 is   the   length   of   the  box.36)  These  measurements
 also  
provide   an   easy  method  for  dividing  a 
cubit
 into    ten    equal   parts   explaining  
why   there   are
 10  vertical  and  15 
horizontal  lines.37)
 
 ––––––––––––––––
 
 
 | 35)   The   squares   of   3   and   4   (9  
plus   16)   are  25,  which is    5   
times    5,    the    only    instance
   of   whole   numbers   under   ten
 making
    up     a     right
    triangle.     The     next
   such    combination    is
 5,    12,
   and    13.    Knowing    the
   combination    3,    4,    and   5
  –   like
 that   of   a   safe  –  is 
knowing  the  secret  of  the  Pythagorean 
theorem.
 Pythagoras   owed   his  theories  to 
the  Jews,  cf.  Ed  Metzler,  Mosaical
Metrology  (N.  9)  Note  16.
 36)   This   geometrical   know-how   is   not  
surprising,   if  the
 people   of   Israel   were
  the   pyramid   builders,   as   Josephus  
Flavius,
 Jewish   Antiquities,   II,   9,  writes, 
cf.  Ed  Metzler,  Mosaical  Metrology
 (N.   9)
  Notes   14   and   54.   The   Exodus   brought
  about   the   end   of
 the    pyramid
   age:    Departing    from    Fayoum
   (Pithom),    where   the
 last   
pyramids   were   built,   the   people   of   Israel
  had   to   reach   the
 Red    Sea   
when    heading    eastward    for    the
   Sinai,    which   is   not
 the
    case,     if     the
    point    of    departure    were
   farther    northward
 near  the  Nile 
delta.
 37)   A   pyramid   measuring   2.5   cubits  in 
height  as  well  as
 at   the   base   divides  
the   cubit   at   the   top   edge   of   the 
Tablets  of
 the   Law   into   10  equal 
parts,  and  a  hexagram  of  two  such 
pyramids
 helps    to    draw    the   
10    lines,    cf.   TORAH   OF   THE  
ALPHABET
 (N.  1)  pp.  8  and  113.
 | 
 | 
  21 
     |